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Abstract 
The study of the physical system consisting of charged 

particles in electromagnetic field constitute a major part of 

the whole of physics. Here starting with the general laws of 

classical electrodynamics in the covariant form and then  

consider special cases of uniform and non–uniform 

electromagnetic fields with examples to find the trajectories 

in exact form or in an approximation. 
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Introduction 

Here we consider the motion of a charged particle in 

various electromagnetic fields in the absence of a 

medium. We follow the treatments of Landau-

Lifshitz and Jackson here. 

The equation of motion of a charge in an 

electromagnetic field can be written as  

*
dp e

eE V H
dt c

      

     ……….1.1 

The expression on the right of equation (1.1.) is 

called Lorentz Force.  

The work done on the charged particle by the electric 

field is given by 

.kind
eE v

dt


     

    ……….1.2 

 The magnetic field does no work on a 

charge moving in it because the force which the 

magnetic field exerts is always perpendicular to the 

velocity of the charge 

Hence the energy of a charged particle in a constant 

time independent electromagnetic field can be written 

as 

2

2

2
1

mc
e

c

 


 



    

     ……….1.3 

 The presence of the field adds to the energy 

of the particle i.e. eϕ the potential energy of the 

charge in the field. Energy depends only scalar but 

not on the vector potential. This means that the 

magnetic field does not affect the energy of the 

charge, only electric field can change the energy. 

 The covariant equation of motion of a 

charged particle can be written as : 

  

 

 2

dXd X q
m A A

d c d


 

  

 
    

     ……….1.4 

Where τ is the proper time 

1.1   Motion in Constant Electric and 

Magnetic Fields 

 Consider the motion of a charged particle 'e' 

moving in a combination of electric and magnetic 

fields E and H, both uniform and constant. For this 
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the equation of motion along the direction of H as z – 

axis will be 

*
e

mv eE V H
c

      

                 ……….1.11 

or 

e
mx yH

c

e
my eEy xH

c

mz eEz







   

            ……….1.12 

From the third equation, it is noted that the charge 

moves with uniform acceleration in the z-direction 

and is given by 

2

0
2

z
z

eE
Z t t

m
      

                 ……….1.13 

Multiplying the 2nd equation by i and combining 

with the first, we get 

     y

d e
x iy i x iy i E

dt m
     

                

 or 

 
yi t

cE
x iy e

H

      

                              ……….1.14 

Separating the real and imaginary parts we get 

 
cos

sin

ycE
x a t

H

y t



 

 

 

   

                 ……….1.15 

The average velocity of the particle along x-axis and 

y-axis are 

 , 0
ycE

x y
H

     

               ……….1.16 

Integrating and choosing the constant of integration 

so that at t= 0, x = y = 0 and we get 

 

 

sin

cos 1

yc
x t t

H

y t











 

 

   

                 ……….1.17 

These equations define a trochoid. Depending on 

wheather a is large or smaller in absolute value than 

the quantity  

2

0 ( )H

H

z x
R


 


     the 

projection of the trajectory on the plane xy. 

 If  
yc

H





    ,then 

  

  sin
yc

x t t
H


 


    

               ……….1.18 

  

  1 cos
ycE

y t
H




    

               ……….1.19 

 These gives the projection of the trajectory 

on the xy plane is a cycloid.  

 All the above formulas are valid for the 

velocity of the particle is small compared with the 

velocity of light and electric and magnetic fields 

satisfy    the condition that 

  1
yE

H
    

                ……….1.20 
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Examples: 

1) Electric and Magnetic Field are Parallel: 

To calculate the relativistic motion of a charged 

particle in parallel uniform electric and magnetic 

fields. In this case the magnetic field has no influence 

on the motion along the common direction of E and 

H (along the z-axis) and hence only the influence of 

electric field.  

 So the equation of motion in the xy-plane 

will be 

  

 ,x y y x

e e
P H P H

c c
 


    

               ……….1.21                

                           
0 cosh

E
z

eE H


   

                ……….1.22 

 This gives the motion of the charged particle 

in parametric form and the trajectory is a helix with 

radius 
cpt

eH
and monotonically increasing step, along 

which the particle moves with decreasing angular 

velocity 

kin

eHc



  with a velocity along the z-axis 

which tends toward the value c. 

II) Electric and Magnetic Field are Mutually 

Perpendicular: 

For this, the equation of motion for the charged 

particle in which H is along z-direction and E along 

y-direction and E = H will be 

  

 

, 1

0

y yx
y

z

dpdp e
E eE

dt c dt c

dp

dt




 
   

 



 

               ……….1.23 

which gives Pz = constant 

It gives the motion of the particle in parametric 

form (i.e. parameter Py) where the velocity increases 

most rapidly in the direction perpendicular to E and 

H along X-axis. 

1.2 Motion in Non-Uniform, Static Magnetic 

Fields 

 Let us consider a non-uniform static 

magnetic field which varies slowly with distance in 

such a manner that the usual perturbation theory can 

be applied to get approximate solutions. For this the 

distance over which H changes appreciably in 

magnitude or direction must be much greater than the 

gyration radius of the particle. 

 As an example consider a magnetic field 

which is independent of z. In the X-Y plane the lines 

of force are not parallel but slightly curved with a 

radius of curvature R that is large compared with the 

gyration radius a. Due to the symmetry of the 

problem it is advantageous to use cylindrical co-

ordinate ( , ,Z   ) with the origin at the centre of 

curvature.  

 The magnetic induction depends on the ratio 

R


 and has only the ϕ component 

  0

R
H H



 
  

 
  

                ……….1.24 

 The Lorentz force equation 

  

  *mr e E H    

               ……….1.25 

becomes in cylindrical coordinates for the above 

magnetic field. 
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2

H

R
z  


     

                ……….1.26 

  2 0     

                ……….1.27 

  0lnH

R
z  



 
  

 
  

                ……….1.28 

 The equation (1.27) can be written as 

    2 0
d

dt
                     ……….1.29 

We obtain 

.
2 a    constant which we write as 

R  

 Had the magnetic field been a constant the 

trajectory would have been a helix, since H is not 

uniform, but does not change drastically we expect 

that ρ would be have a value close to R, when the 

trajectory of the helix has a radius small compared to 

R. So ρ can be put as ρ=R+x and f
R

 
 
 

 can be 

expanded in powers of 

x

R
 , appropriately with the 

approximation 0Hz x   the radial equation 

of motion is approximately given by 

  

 

2

2 2

02

3
H Hx x

R R


   
 

    
 

 

               ……….1.30 

 This is the equation of motion of a harmonic 

oscillator around x with a displaced equilibrium 

position 

  

2

0

2

H H

x
R

 

 
     

                ……….1.31 

 Here we have assumed H H R  . 

The mean value of ż is 

 

2

0 ( )H

H

z x
R


 


     

               ……….1.32 

 This is known as Curvature drift. If the 

spatial variation of the magnetic field is such that the 

gradient of the field is perpendicular to the direction 

of H . then an analysis analogous to the above gives 

a gradient drift to velocity. Both then drifts are 

trouble some in confining high temperature plasmas, 

and the twisted figure eight toroidal design is made to 

keep the plasma confined. 

Conclusion 

The above considerations are used in various ways 

such as cathode ray oscilloscopes and tubes, 

cyclotrons and other accelerators, motion of charged 

particles in the ionosphere, synchro-cyclotron 

(Relativistic ion Cyclotron), 
e

m
 of an electron by 

Thomson method, Thomson mass spectrograph, 

Aston's mass Spectrograph, Dempster, Mass 

Spectrograph, Magnetron Betatron, Hall effects etc. 
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